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Abstract. The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite 

concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of 15 

two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region, 

provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic 

groups. Water samples for phytoplankton enumeration were collected from the upper 30 m during two cruises, the first to the 

South Atlantic sector (Jan-Feb 2011; 60o W-15o E and 36-60o S) and the second in the South Indian sector (Feb-Mar 2012; 

40-120o E and 36-60o S). The species composition of coccolithophores and diatoms was examined using scanning electron 20 

microscopy at 27 stations across the Sub-Tropical, Polar, and Sub-Antarctic Fronts. The influence of environmental 

parameters, such as sea-surface temperature (SST), salinity, carbonate chemistry (i.e., pH, partial pressure of CO2 (pCO2), 

alkalinity, dissolved inorganic carbon), macro-nutrients (i.e., nitrate+nitrite, phosphate, silicic acid, ammonia), and mixed 

layer average irradiance, on species composition across the GCB, was assessed statistically. Nanophytoplankton (cells 2-20 

µm) were the numerically abundant size group of biomineralizing phytoplankton across the GCB, the coccolithophore 25 

Emiliania huxleyi and the diatoms Fragilariopsis nana, F. pseudonana and Pseudonitzschia sp. were the most dominant and 

widely distributed species. A combination of SST, macro-nutrient concentrations and pCO2 were the best statistical 

descriptors of biogeographic variability of biomineralizing species composition between stations. Emiliania huxleyi occurred 

in the silicic acid-depleted waters between the Sub-Antarctic Front and the Polar Front, indicating a favorable environment 

for this coccolithophore in the GCB after spring diatom blooms remove silicic acid to limiting levels. After full consideration 30 

of variability in carbonate chemistry and temperature on the distribution of nanoplankton in the GCB, we find that 

temperature remains the dominant driver of biogeography in a large proportion of the modern Southern Ocean.  
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1 Introduction 

The Great Calcite Belt (GCB), defined as an elevated particulate inorganic carbon (PIC) feature occurring in austral spring 

and summer in the Southern Ocean (Balch et al., 2005), plays an important role in climate fluctuations (Sarmiento et al. 

1998, 2004), accounting for over 60% of the Southern Ocean area (30-60oS; Balch et al., 2011). The region between 30-50oS 

is recognized as having the highest uptake of anthropogenic carbon dioxide (CO2) alongside the North Atlantic Ocean 5 

(Sabine et al., 2004). The impact of future perturbations of ocean chemistry on Southern Ocean phytoplankton biogeography 

(e.g., Passow and Carlson, 2012) is poorly constrained. Understanding the current environmental influences on 

phytoplankton biogeography is therefore critical if model parameterizations are to improve (Boyd and Newton, 1999) and 

provide more accurate predictions of future biogeochemical change.  

The Southern Ocean has often been considered as a micro-plankton (20-200 µm) dominated system with phytoplankton 10 

blooms dominated by large diatoms and Phaeocystis sp. (e.g., Bathmann et al., 1997; Poulton et al., 2007; Boyd, 2002). 

However, since the recent identification of the GCB as a consistent feature (Balch et al., 2005; 2016) and the recognition of 

the importance of pico- (< 2 µm) and nanoplankton (2-20 µm) in High Nutrient Low Chlorophyll (HNLC) waters (Barber 

and Hiscock, 2006), the dynamics of small mineralizing plankton and their subsequent export need to be reconsidered. The 

two dominant mineralizing phytoplankton groups in the GCB are coccolithophores and diatoms. Coccolithophores are 15 

generally found north of the PF (e.g., Mohan et al., 2008), though Emiliania huxleyi has been observed as far south as 58oS 

in the Scotia Sea (Holligan et al., 2010), at 61oS across Drake Passage (Charalampopoulou et al., 2016) and 65oS south of 

Australia (Cubillos et al., 2007).  

Diatoms are present throughout the GCB, with the Polar Front marking a strong divide between different size fractions 

(Froneman et al., 1995). North of the PF, small diatom species (< 20 µm) such as Pseudonitzschia sp. and Thalassiosira sp. 20 

tend to dominate numerically, whereas large diatoms (> 20 µm) with higher silicic acid requirements (e.g. Fragilariopsis 

kerguelensis) are generally more abundant south of the PF (Froneman et al., 1995). High abundances of nanoplankton 

(coccolithophores, small diatoms, chrysophytes) have also been observed on the Patagonian shelf (Poulton et al., 2013) and 

in the Scotia Sea (Hinz et al., 2012). Currently, few studies incorporate small mineralizing phytoplankton to species level 

(e.g., Froneman et al., 1995; Bathmann et al., 1997; Poulton et al., 2007; Hinz et al., 2012). Rather, the focus has often been 25 

on the larger and non-calcifying species of phytoplankton in the Southern Ocean due to sample preservation issues (i.e., 

acidified Lugol's solution dissolves calcite and light microscopy restricts accurate identification to cells > 10 µm; Hinz et al., 

2012). The distribution of mineralizing phytoplankton is important to define when considering phytoplankton interactions 

with carbonate chemistry (e.g., Langer et al., 2006; Tortell et al., 2008) and ocean biogeochemistry (e.g., Baines et al., 2010; 

Assmy et al., 2013; Poulton et al., 2013).  30 
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The GCB begins south of ~30o S and extends to ~60o S covering an area of ~88	× 106 km2 (Balch et al., 2011), spanning the 

major Southern Ocean circumpolar fronts (Fig. 1a): the Sub-Antarctic front (SAF); the Polar Front (PF); the Southern 

Antarctic Circumpolar Current Front SACCF); and occasionally, the Southern Boundary of the Antarctic Circumpolar 

Current (ACC, see Tsuchiya et al., 1994; Orsi et al., 1995; Belkin and Gordon, 1996). The Subtropical Front (STF; at 

approximately 10° C) acts as the northern boundary of the GCB and is associated with a sharp increase in PIC southwards 5 

(Balch et al., 2011). These fronts divide distinct environmental and biogeochemical zones making the GCB an ideal study 

area to examine the controls on phytoplankton communities in the open ocean (Boyd, 2002; Boyd et al., 2010). High PIC 

concentration observed in the GCB (1 µmol PIC L-1) compared to the global average (0.2 µmol PIC L-1) and significant 

quantities of detached coccoliths of the ubiquitous coccolithophore Emiliania huxleyi (in concentrations > 20,000 coccoliths 

mL−1; Balch et al., 2011) both characterize the GCB. The GCB is clearly observed in satellite imagery (e.g.; Balch et al., 10 

2005; Fig. 1b;) spanning from the Patagonian Shelf (Signorini et al., 2006; Painter et al., 2010), across the Atlantic, Indian 

and Pacific Oceans and completes the Antarctic circumnavigation via the Drake Passage. 

The waters of the GCB have been more specifically characterized as High Nitrate Low Silicate Low Chlorophyll 

(HNLSiLC; e.g., Dugdale et al., 1995; Leblanc et al., 2005; Moore et al., 2007; Le Moigne et al., 2013), where dissolved 

iron (dFe) is considered an important control on microplankton (>20 µm) growth (e.g., Martin et al., 1990; Gall et al., 2001; 15 

Venables and Moore, 2010). Sea-surface temperature (SST) gradients have long been recognized as a driving factor behind 

phytoplankton biogeography and community composition (Raven and Geider, 1988; Boyd et al., 2010). The influence of 

environmental gradients on mineralizing phytoplankton in the Scotia Sea and Drake Passage has also been assessed (Hinz et 

al., 2012; Charalampopoulou et al., 2016). However, the controls on the distribution of the mineralizing nanoplankton are yet 

to be established for the wider Southern Ocean and GCB. Previous studies have predominantly focused on a single 20 

environmental factor (Eynaud et al., 1999) or combinations of temperature, light, macronutrients and dFe (Poulton et al., 

2007; Mohan et al., 2008; Balch et al., 2016) to explain phytoplankton distribution. The inclusion of carbonate chemistry as 

an influence on phytoplankton biogeography is a relatively recent development (e.g., Charalampopoulou et al., 2011, 2016; 

Hinz et al., 2012; Poulton et al., 2014; Marañón et al., 2016). Furthermore, natural variability in ocean carbonate chemistry 

and the resulting impacts on in situ phytoplankton populations remain one of the greatest biogeochemical uncertainties. 25 

Increasing concentration of dissolved CO2 in the oceans is resulting in 'ocean acidification' via a decrease in ocean pH 

(Caldeira and Wickett, 2003). In the high latitudes, where colder waters enhance the solubility of CO2 and reduce the 

saturation state of calcite, there may be potential detrimental effects on calcifying phytoplankton (Doney et al., 2009). 

However, this may be species- (Langer et al., 2006) or even strain-specific (Langer et al., 2011), showing an optimum-

response when the opposing influences of pH and bicarbonate are considered in a substrate-inhibitor concept (Bach et al., 30 

2015). The response of non-calcifiers (e.g., diatoms) to ocean acidification is a greater unknown but no less important given 

their ~40 to 50% contribution to global primary production (e.g., Tréguer et al., 1995; Sarthou et al., 2005). Tortell et al. 
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(2008) observed a switch from small to large diatom species with increasing CO2, indicating a potential change in future 

community structure. Large phytoplankton species (>50 µm) may also have the existing physiological traits to withstand 

changes in ocean chemistry over smaller (<50 µm) celled species (Flynn et al., 2012), as well as potentially being less 

susceptible to grazing pressure (Assmy et al., 2013). Alternatively, there may be a shift towards small phytoplankton groups 

due to the expansion of low-nutrient subtropical regions (Bopp et al., 2001; Bopp, 2005). The response of Southern Ocean 5 

phytoplankton biogeography to future climate conditions, including ocean acidification, is complex (e.g., Charalampopolou 

et al., 2016; Petrou et al., 2016; Deppeler and Davidson, 2017) and therefore understanding existing relationships between in 

situ phytoplankton communities and ocean chemistry is an important stepping-stone for predicting future changes. 

Here, we assess the distribution of coccolithophore and diatom species in relation to the environmental conditions 

encountered across the GCB. Diatom and coccolithophore cell abundances were obtained from analysis of scanning electron 10 

microscopy (SEM) images, and their distribution statistically assessed in relation to SST, salinity, mixed layer average 

irradiance, macronutrients and carbonate chemistry. Herein, we examine the spatial differences within the mineralizing 

phytoplankton in the GCB, the main environmental drivers behind their biogeographic variability and the potential effects of 

future carbonate chemistry perturbations. 

2 Methods 15 

2.1 Sampling area 

Two cruises were undertaken in the GCB during 2011 and 2012 (http://www.bco-dmo.org/project/473206). The Atlantic 

sector of the Southern Ocean (GCB1) was sampled from 11th January to 16th February 2011 onboard the R/V Melville, 

between Punta Arenas, Chile and Cape Town, South Africa (Balch et al., 2016; Fig. 1). The Indian sector of the Southern 

Ocean (GCB2) was sampled from 18th February to 20th March 2012 onboard the R/V Revelle between Durban, South Africa 20 

and Fremantle, Australia (Fig. 1). Water samples were taken at 27 stations across a latitudinal gradient ranging from 38o S to 

60o S and a longitudinal gradient ranging from 60o W to 120o E during the GCB cruises, which enabled sampling of the major 

oceanographic features of this region.  

2.1 Physiochemical environmental conditions 

Water samples,  for this study, were collected from the upper 30 m of the water column using a Niskin bottle rosette and 25 

CTD profiler for sea surface temperature, salinity, chlorophyll a (Chl a), nitrate plus nitrite (TOxN), ammonia (NH4), 

phosphate (PO4), silicic acid (Si(OH4)), and carbonate chemistry. Nutrient analyses of TOxN, PO4, Si(OH4) and NH4 were 

run on a Seal Analytical continuous-flow AutoAnalyzer 3, while salinity was determined using a single Guildline Autosal 

8400B stock salinometer (S/N 69-180). Chlorophyll a was sampled in triplicate following Joint Global Ocean Flux Studies 

(JGOFS; Knap. et al, 1996) protocols. Mixed layer depths were calculated from processed CTD data applying a criteria of a 30 
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0.02 kg m-3 density change from the 5 m depth value (Arrigo et al., 1998). Daily surface Photosynthetically Active Radiation 

(PAR) irradiance (mol PAR m-2 d-1) was estimated from eight-day composite Aqua MODIS data from the closest time and 

latitude-longitude point (averages were taken where necessary). Mixed layer average irradiance (ĒMLD) was calculated from 

the daily PAR following Poulton et al. (2011).  

Water samples were collected for dissolved inorganic carbon (CT) and Total Alkalinity (AT) following standardized methods 5 

and analyzed using a Versatile Instrument for the Determination of Titration Alkalinity (VINDTA) with precision and 

accuracy of ±1 µmol kg-1 (Bates et al., 1996; Bates et al., 2012). The remaining carbonate chemistry parameters were 

calculated from the CT and AT values using CO2SYS (Lewis and Wallace, 1998) and CO2calc (Robbins et al., 2010) with the 

carbonic acid dissociation constants of Mehrbach et al. (1973) refitted by Dickson and Millero (1987). This includes 

computation of the saturation state (Ω) for calcite (i.e., Ωcalcite). 10 

2.2 Phytoplankton enumeration 

Samples for mineralizing phytoplankton community structure were also taken from the upper 30 m of the water column. At 

each sampling station 1 L seawater samples were collected and pre-filtered through a 200 µm mesh to remove any large 

zooplankton. Seawater samples were then gently filtered through a 25 mm, 0.8 µm Whatman® polycarbonate filter with a 

200 µm mesh as a backing filter to ensure an even distribution of cells across the filter. The filters were rinsed with ~5 mL 15 

potassium tetraborate (0.02 M) buffer solution (pH = 8.5) to prevent salt crystal growth and PIC dissolution, air dried and 

stored in petri slides in the dark with a desiccant until further analysis. 

To identify coccolithophores to the species level, each sample was imaged using the SEM methodology of 

Charalampopoulou et al. (2011). A central portion of each filter was cut-out, gold-coated and 225 photographs were taken at 

a magnification of 5000x (equivalent to ~1 mm2; GCB1) or 3000x (~2.5 mm2; GCB2) using a Leo 1450VP SEM (Carl Zeiss, 20 

Germany). Detached coccoliths and whole coccolithophore cells (coccospheres) were identified following Young et al. 

(2003). Diatoms and other recognizable protists were identified following Hasle and Syvertsen (1997) and Scott and 

Marchant (2005). Where a confident species level identification was not possible, cells were assigned to the level of genera 

(e.g., Chaetoceros sp. or Pappamonas sp.). Each species identified was enumerated using the freeware ImageJ (v1.44o) for 

all 225 images or until 300 cells (or coccoliths) were counted. A minimum of 10 random images was picked for enumeration 25 

when species were in high abundance (>1000 cells mL−1). The abundance of each species was calculated following Eq. (1): 

#$%%&	'()* = (C	×F/A)/V          (1) 

 

where C is the total number of cells (or coccoliths) counted, A is the area investigated (mm2), F is the total filter area (mm2) 

and V is the volume filtered (mL).  30 

Biogeosciences Discuss., doi:10.5194/bg-2017-110, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 13 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



6 
 

2.3 Statistical analysis 

Multivariate statistics (PRIMER-E v.6.1.6; Clarke and Gorley, 2006) were used to examine spatial changes in 

coccolithophore and diatom abundance, species distribution and the influence of environmental variability on biogeography 

(e.g., Charalampopoulou et al., 2011, 2016).  Environmental data was initially assessed for skewness, most likely due to 

strong chemical gradients across fronts. Heavily left-skewed variables (TOxN, silicic acid and NH4) were log(V+0.1) 5 

transformed to reduce skewness and stabilize variance. Other environmental data, including SST, salinity, ĒMLD, TOxN, 

silicic acid, NH4, pH, pCO2 and Ωcalcite was then normalized to a mean of zero and a standard deviation of one, and Euclidean 

distance was then used to determine spatial changes. A principal component analysis (PCA) was used to simplify 

environmental variability, by combining the more closely correlated variables and the relative influence of the environmental 

variables within the data (Clarke, 1993; Clarke and Warwick, 2001; Clarke and Gorley, 2006). 10 

Coccolithophore and diatom species diversity was assessed as the total number of species (S), and Pielou’s evenness index 

(J’) which assesses how evenly the count data was distributed between the different species present. Species with cell counts 

of less than 1 cell mL−1, and/or consistently representing less than 1% of the total cell abundance, were excluded from 

multivariate statistical analysis to reduce the influence of rare species. Analysis of coccolithophore and diatom community 

structure was carried out on standardized and square root transformed cell abundance (to reduce the influence of numerically 15 

abundant species) using a Bray-Curtis similarity matrix. To identify which stations had a statistically similar plankton 

community across the GCB a SIMPROF routine (1000 permutations, 5% significance level) was applied to the Bray-Curtis 

similarity matrix. The phytoplankton species driving the differences between the groups were identified through a SIMPER 

routine and presented using non-metric multidimensional scaling (nMDS; Clarke, 1993; Clarke and Warwick, 2001; Clarke 

and Gorley, 2006). 20 

A BEST routine was applied to environmental and plankton data to determine the combination of environmental variables 

that ‘best’ described the variability in coccolithophores and diatoms across the GCB. Spearman’s rank correlations were 

used to further investigate the relationship between key environmental variables identified in the BEST routine and selected 

coccolithophore and diatom species.  

3 Results 25 

3.1 General Oceanography 

The GCB cruises crossed various biogeochemical gradients associated with the Antarctic Circumpolar Current (ACC) fronts 

and currents, with most parameters following a recognizable latitudinal (or zonal) pattern. The position of oceanic fronts 

referred to in the following text relates to those defined in Fig. 1 (see also Balch et al., 2016). Sea-surface temperature 

decreased southwards from 21o C north of the STF to 1.1o C close to 60o S (Table 1). Calcite saturation state (Ωcalcite) 30 
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decreased from 5.2 north of the subtropical front to 2.6 close to 60o S (Table 1). Macronutrient concentrations generally 

increased southwards with a distinct divide across the SAF. TOxN ranged from below detection limits (<0.1 µmol L-1) to as 

high as 28 µmol L-1, with higher concentrations generally south of the Sub-Antarctic Front (>12 µmol L-1), and lower 

concentrations (<7 µmol L-1) north of the Sub-Antarctic Front (Table 1). PO4 followed a very similar pattern with 

concentrations generally greater than 1 µmol L-1 south of the Sub-Antarctic Front and <0.6 µmol L-1 to the north. Silicic acid 5 

concentrations were divided by the PF, being generally less than 2 µmol L-1 to the north and up to 78.5 µmol L-1 to the south 

(Table 1). ĒMLD was highest on the Patagonian Shelf (~40 mol photons m−2 d−1) and generally less than 10 mol photons m−2 

d−1 south of the Sub-Antarctic Front (Table 1). There was no distinct latitudinal trend in pH or pCO2. Surface water pH was 

generally greater than 8.06, ranging from 8.03 on the Kerguelen plateau to 8.13 in the Sub-Tropical Front south-west of 

Australia (Table 1). Surface water pCO2 ranged from 299 µatm to 444 µatm with both extremes in the vicinity of the Atlantic 10 

STF (Table 1). Chl a concentrations were variable across the oceanic gradients, highest on the Patagonian Shelf (2.78 mg 

m−3) and on average less than 1 mg m−3 in the South Atlantic compared with less than 0.5 mg m−3 in the South Indian Ocean 

(Table 1). 

3.2 Coccolithophores and diatoms 

The most frequently occurring and abundant size group within the coccolithophores and diatoms were the nanoplankton 15 

(cells 2-20 µm). Large diatom species (cells >20 µm) were found in higher numbers (up to 50 cells mL-1) south of the PF but 

were not numerically dominant compared to the nanoplankton species at these locations. Total cell abundances were less 

than 1000 cells mL−1 at most stations (Table 2), which are indicative of late summer, non-bloom conditions. In the South 

Atlantic, the highest abundance of coccolithophores was on the Patagonian Shelf (station GCB1-16; 1,636 cells mL−1) and 

the highest abundance of diatoms was east of the South Sandwich Islands (station GCB1-77; 6,787 cells mL−1; Table 2). 20 

These were also the highest total abundances of coccolithophores and diatoms encountered across the entire GCB. In the 

South Indian Ocean, coccolithophore abundance was highest near the Crozet Islands (station GCB2-27; 472 cells mL−1) and 

the diatom abundance was highest at the most southerly station (station GCB2-73; 514 cells mL−1; Table 2). There were no 

stations in the South Indian Ocean with coccolithophore and diatom abundances were greater than 1,000 cells mL−1 (Fig. 2, 

Table 2). 25 

Coccolithophores dominated the mineralizing plankton community at twelve stations in terms of abundance north of the PF 

(Fig. 2, Table 2). On average coccolithophores contributed approximately 38% to total (coccolithophore and diatom) 

abundance in the GCB. Coccolithophores were greater than 75% of total abundance at only one station, north of South 

Georgia (station GCB1-59), and never accounted for 100% of total cell numbers. Twenty-eight species of coccolithophores 

were identified as intact coccospheres across the GCB. Coccolithophore diversity decreased south towards 60o S, with the 30 

highest coccolithophore diversity (13 species) found in the vicinity of the STF in the eastern part of the South Indian Ocean 

(station GCB2-106), while species contributions to total coccolithophore abundance was more evenly distributed between 
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the different species in the lower latitudes (i.e., high J'; Table 2). Emiliania huxleyi was the most numerically abundant 

coccolithophore at all but four stations and was encountered in the mixed layer at all stations except one (station GCB2-73). 

Other coccolithophore species (e.g., Syracosphaera sp. and Umbellosphaera sp.) were present north of the PF throughout the 

GCB and were most abundant north of the STF. At stations south of the SAF (50o S) only one (E. huxleyi) or two species (E. 

huxleyi and Pappamonas sp.) were observed as intact coccospheres. 5 

Diatoms dominated 15 stations in terms of mineralizing plankton numerical abundance across all environments sampled 

(Fig. 2, Table 2) and were found in every sample analyzed, contributing 62% on average to the total cell (coccolithophores + 

diatoms) abundance. Diatoms made up 100% of the total cell counts at the most southerly station in the South Indian Ocean 

(station GCB2-73) and 99.7% east of the South Sandwich Islands (station GCB1-77; Fig. 2). Seventy-six species of diatom 

were identified as intact cells across the entire GCB. The most frequently occurring species in the GCB were small (< 5 µm 10 

in length) Fragilariopsis ssp.. The highest abundance of diatoms in the South Atlantic Ocean (6,787 cells mL−1) was 

dominated by F. nana east of the South Sandwich Islands (station GCB1-77). The highest diatom abundance in the South 

Indian Ocean (514 cells mL−1) was dominated by F. pseudonana at the most southerly station (station GCB2-73) sampled. 

Another frequently dominant diatom was Pseudonitzschia sp. that was most abundant north of the PF (Table 2).  

Diatom species richness increased south towards 60o S with the contribution of the different diatom species to total 15 

mineralizing plankton abundance fairly even (J’ > 0.5, Table 2), except at stations (stations GCB1-70, GCB1-77, GCB2-27 

and GCB2-63) where Fragilariopsis ssp. <5 µm were dominant (>70% of the diatom population, J’ < 0.5). The highest 

diatom species richness (15 species) was found in the GCB south of the SAF (stations GCB1-85 and GCB2-36) at 

temperatures of 5oC to 8oC, in HNLSiLC conditions (TOxN  >18 µmol L-1, silicic acid <2 µmol L-1, Chl a 0.21-1.11 mg m-3). 

3.3 Statistical Analysis 20 

Three of the environmental variables were removed from the statistical analysis following a Spearman’s rank (rs) correlation 

analysis (Table S1). TOxN and PO4 had a strong significant positive correlation (rs = 0.961, p < 0.0001) and so TOxN was 

deemed representative of both nutrients. Sea-surface temperature displayed significant negative correlations with both CT (rs 

= -0.981, p < 0.0001) and AT (rs = -0.953, p < 0.0001), and so sea surface temperature was taken as being representative of 

these two variables of the carbonate chemistry system.  25 

The variation in environmental variables across the GCB was examined using a Principal Component Analysis (PCA). The 

first principal component (PC1) accounted for 58% of the variation in environmental variables, with an additional 17% of 

environmental variation described by PC2 (Table 3). PC1 describes the main latitudinal gradients of environmental changes 

across the GCB (decreasing SST, increasing macronutrients). PC1 is a predominantly linear combination of SST, salinity, 

TOxN, silicic acid, NH4, and Ωcalcite, where there is a significant positive correlation of PC1 with SST and salinity and a 30 

significant negative correlation with all other variables (Table 3). PC2 represented the environmental variation in the GCB 
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occurring independently of latitude, and was driven predominantly by variation in pCO2, with weaker influences from ĒMLD 

and pH (Table 3). PC2 had significant positive correlations with pCO2 and ĒMLD and a negative correlation with pH. 

Variability in coccolithophore and diatom species composition across the GCB was assessed using a SIMPROF routine, 

comparing the abundance and diversity across all stations, to define groups with statistically similar community composition. 

Six statistically significant groups (p< 0.05) were defined across the GCB (Fig. 3). Three groups of these groupings (A, B, 5 

C) were specific to the South Atlantic Ocean (Fig. 3). For example,groups A and B represented individual stations GCB1-46 

and GCB1-117 respectively, in the sub-tropical region of the South Atlantic Ocean. The most southerly stations in the South 

Atlantic Ocean (stations GCB1-70 and GCB1-77) defined group C (Fig. 3). Groups D, E and F included stations across the 

GCB in both ocean regions. Here, group D was defined by eight stations sampled predominantly north of the SAF, while 

group F was defined by 11 stations predominantly sampled south of the SAF (Fig. 3). These statistically defined similar 10 

community structures indicate that although the GCB covers a wide expanse of ocean, the community structure is 

consistently latitudinal defined across its longitudinal range. 

The species driving the differences in mineralizing plankton community structure across the GCB were identified through a 

SIMPER routine (Table 4). Groups A and B were defined by the absence of E. huxleyi and the presence of either 

holococcolithophores (group A) or the diatom Cylindrotheca sp. (group B). Group C was defined by the presence of F. nana 15 

(Table 4) and low contributions from E. huxleyi and Pseudonitzschia sp., with low diversity overall (total of 9 mineralizing 

species; Table 2) resulting in a significant difference from the other groups. Group D had higher total species diversity 

overall (i.e., 12-23 species; Table 2) and was defined by similar relative abundances of E. huxleyi and Pseudonitzschia sp., 

which were not found elsewhere (Table 4). Group E, including stations north of the SAF (Fig. 3), included E. huxleyi, U. 

tenuis and holococcolithophores (Table 4). The low abundance of diatoms (3-125 cells mL-1; Table 2) within group E 20 

separated it from the other groups (Table 4). The combination of E. huxleyi, F. pseudonana and Pseudonitzschia sp. that 

defined group F (Table 4) represented stations on the Patagonian Shelf and south of the SAF (Fig. 3). The almost mono-

specific E. huxleyi coccolithophore community (Table 2) in group F highlights its strong dissimilarity from the other 

community structure groups identified (Table 4). 

The abundance and distribution of four nanophytoplankton species, E. huxleyi, Psuedonitzschia sp., F. nana and F. 25 

pseudonana (Fig. 4), were identified as having the most significant contribution to differences in community structure across 

the GCB (Table 4, Fig. 5). Emiliania huxleyi and F. pseudonana were the most dominant coccolithophore and diatom 

species, respectively, across the GCB (Table 2). Fragilariopsis pseudonana was the numerically dominant diatom (> 30%) 

at seven stations in the South Indian Ocean (Table 2). The diatom with the highest abundance, F. nana (6797 cells mL-1), 

was almost exclusively found in the South Atlantic Ocean (Table 2; Fig. 5) and the more frequently occurring 30 

Pseudonitzschia sp. was present at all but two stations (Fig. 5). 
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The influence of environmental variables on the biogeography of coccolithophores and diatoms in the GCB was assessed 

using the BEST routine.  The strongest Spearman’s rank correlation (rs = 0.55, p < 0.001) between all possible environmental 

variables and the biogeographical patterns observed came from a combination of five variables, including: (1) SST; (2-4) 

macronutrients (TOxN, silicic acid, NH4); and (5) pCO2. This was followed by a correlation of rs = 0.54 (p < 0.001) that 

included these parameters as well as Ωcalcite. Salinity was included in the third highest correlation, whereas ĒMLD and pH did 5 

not rank as significant factors in the BEST analysis.  

4 Discussion 

4.1 Biogeography of coccolithophores and diatoms in the Great Calcite Belt 

Studies of Southern Ocean phytoplankton productivity have generally focused on the micro-phytoplankton (Barber and 

Hiscock, 2006) as these species contribute around 40% to total oceanic primary production (Tréguer et al., 1995; Sarthou et 10 

al., 2005). However, nanoplankton and picoplankton are becoming increasingly recognised as important contributors to total 

phytoplankton biomass, productivity and export in the Southern Ocean (e.g., Boyd, 2002; Hinz et al., 2012), both as the 

dominant size group in post-bloom (Le Moigne et al., 2013) and non-bloom conditions (Barber and Hiscock, 2006).   

In this study, coccolithophores were generally numerically dominant at stations sampled north of the PF, particularly around 

the SubAntarctic Front, whereas diatoms were observed to be dominant at stations south of the PF (Fig. 2). There was also a 15 

significantly different species distribution (a priori ANOSIM; R = 0.227, p < 0.01) north and south of the Sub- Antarctic 

Front, which has been previously identified as the divider between calcite and opal dominated export in the Southern Ocean 

(e.g., Honjo et al., 2000; Balch et al., 2016). Diatoms were more abundant (~570 cells mL−1) than coccolithophores (~160 

cells mL−1) on average in the entire GCB. This contrasts to a study by Eynaud et al. (1999) in the South Atlantic Ocean at a 

similar time of year that reported a peak in coccolithophore cell abundance in the vicinity of the PF (a feature that was not 20 

observed in this study). These differences are likely to be due to the variability of Southern Ocean plankton on short 

temporal scales (Mohan et al., 2008), including variability in the seasonal progression of the spring bloom (Bathmann et al., 

1997). 

 

The coccolithophore E. huxleyi and diatoms F. pseudonana, F. nana and Pseudonitzschia sp. (Fig. 4) were all identified as 25 

being central to defining the statistical similarities within, and the differences between, the different mineralizing 

phytoplankton groups (Table 4, Fig. 5). These four species are all part of the nanoplankton and at the lower end of the size 

range of the microplankton (Pseudonitzschia sp. is ~20 µm in length), which can contribute significantly to biomass in the 

HNLC regions of the Southern Ocean (Boyd, 2002). Emiliania huxleyi and Fragilariopsis sp. less than 10 µm have been 

identified as two of the most abundant mineralizing phytoplankton further south in the Scotia Sea (Hinz et al. 2012). The 30 

results presented here further indicate that nanoplankton do have the potential to contribute a significant proportion to GCB 
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community composition alongside the larger phytoplankton (including large diatoms) typically associated with the HNLC 

region.  

The abundance of HNLC diatoms such as F. kerguelensis (<10 cells mL−1), T. nitzschoides (<20 cells mL−1) and large 

Chaetoceros sp. (<10 cells mL−1) were generally lower than those observed in other studies (e.g., Poulton et al., 2007; 

Armand et al., 2008; Korb et al., 2010, 2012). Furthermore, the virtual absence of Eucampia antarctica (<1 cell mL−1) in this 5 

study does not reflect the typical assemblage (sometimes > 600 cells mL−1) found in previous studies (e.g., Kopczyaska et 

al., 1998; Eynaud et al., 1999; de Baar et al., 2005; Poulton et al., 2007; Salter et al., 2007; Korb et al., 2010). Low 

abundances of the large-celled diatoms in the silicic acid replete regions could be influenced by the small filter area analyzed 

using SEM; in this study the area imaged equates to a relatively small volume of water (i.e., 2-6 mL depending on 

magnification) relative to the larger volumes (10-50 mL) often examined for light microscopy in other studies. Large, rare 10 

cells may not be enumerated from such small sample volumes, however the numerically abundant nanoplankton groups were 

well represented in SEM images. Conversely, samples preserved in acidic Lugol’s solution for light microscopy analysis are 

biased towards larger species since small diatoms (<10 µm) are not clearly visible and coccolithophores are not well 

preserved (Hinz et al., 2012). Therefore, in future a combination of both imaging techniques should be used when examining 

the phytoplankton community structure of the wider Southern Ocean.   15 

4.2 Emiliania huxleyi in the Great Calcite Belt 

The importance of coccolithophores in the GCB was examined via species community composition and abundance of intact 

cells, focusing on areas identified as having high PIC reflectance from underway sampling and satellite observations (Balch 

et al., 2014, 2016). Higher species diversity of coccolithophores occurred north of the STF (i.e., 4-13 species; Table 2).  

Coccolithophores are diverse in the stratified and low-nutrient waters associated with lower latitudes (Winter et al., 1994). 20 

Only a few species are found in the colder waters south of the STF (Mohan et al., 2008), the most successful being E. 

huxleyi, which was observed at an abundance of 103 cells mL−1 at 1oC in this study in the South Atlantic (station GCB1-70). 

The 2oC isotherm has been previously assumed to represent the southern boundary of E. huxleyi (e.g., Verbeek, 1989; Mohan 

et al., 2008) and inter-annual variability could be influenced by movement of the southern front of the Antarctic Circumpolar 

Current (Holligan et al., 2010). The Southern Ocean E. huxleyi morphotype (Cook et al., 2011; Poulton et al., 2011) may 25 

therefore have a wider temperature tolerance than its northern hemisphere equivalent (Hinz et al., 2012) and has been 

observed poleward of 60o S further east in the Southern Ocean (Cubillos et al., 2007) and across Drake Passage 

(Charalampopoulou et al., 2016). There were three distinct E. huxleyi features (the Patagonian Shelf, north of South Georgia 

and north of the Crozet Islands) within the GCB where E. huxleyi contributed > 50% of the total cell counts of mineralizing 

phytoplankton. Emiliania huxleyi was most abundant (1636 cells mL−1) on the Patagonian Shelf and was the most frequently 30 

occurring coccolithophore across the entire GCB. The main E. huxleyi features are discussed further below to understand 

why this species is so widely distributed in the GCB. 
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4.2.1 Patagonian Shelf 

The Patagonian Shelf is a well-known region for E. huxleyi blooms, as observed in satellite imagery between November and 

January (i.e., Signorini et al., 2006; Painter et al., 2010; Balch et al., 2011; Garcia et al., 2011; Balch et al., 2014). The E. 

huxleyi cell abundance observed in this study (~1600 cells mL−1) was similar to that found by Poulton et al. (2013; >1000 

cells mL−1). Using a value of 0.2 pg Chl a per cell (Haxo, 1985) following Poulton et al. (2013), such E. huxleyi abundance 5 

levels are equivalent to contributions of only ~12% to the total Chl a signal (~2.8 mg m−3), which is a similar contribution to 

that estimated in an identical way by Poulton et al. (2013). This data combined with the satellite observations supports the 

hypothesis of a similar phytoplankton structure repeating on an inter-annual basis, although the contribution of E. huxleyi to 

net primary production may vary. The optimum range for E. huxleyi blooms on the Patagonian Shelf has been identified as 

between 5-15o C at depleted silicic acid levels relative to nitrate (Balch et al. 2014; 2016). During this study, silicic acid was 10 

drawn-down to undetectable levels on the Patagonian Shelf (Table 1), with the source water for this region being Southern 

Ocean HNLSiLC waters transported northwards via the Falklands current (Painter et al., 2010; Poulton et al., 2013). The 

persistent low silicic acid availability and residual nitrate (defined as [NO3
-] - [Si(OH)4]) on the Patagonian Shelf is therefore 

an ideal environment for E. huxleyi to grow without the competition of large, fast growing diatoms (Balch et al., 2014). 

4.2.2 South Georgia 15 

South Georgia is renowned for intense diatom blooms of over 600 cells mL−1 with Chl a over 10 mg m−3 and integrated 

primary production up to 2 g C m−2 d−1 (Korb et al., 2008). However, E. huxleyi was the dominant species (>75% of total cell 

numbers) within the diatom and coccolithophore population at the station north of South Georgia (Table 2, Fig. 2). The 

associated calcite feature can also be identified from the satellite composite in Fig. 1 (38o E, 51o S). Emiliania huxleyi 

contributed approximately 15% (using 0.2 pg Chl a per cell) to the total Chl a signal (0.71 mg m-3) around South Georgia. 20 

The high calcite feature at South Georgia was found at SST of 5.9oC, which is below the considered ’optimum’ growth 

conditions for E. huxleyi previously cultured (Paasche, 2001). This population of E. huxleyi was most likely an adapted cold 

water morphotype (Cook et al., 2011; Poulton et al., 2011; Cook et al., 2013). The dominant diatom species here was 

Actinocyclus sp. and highly silicified Thalassionema nitzschoides with silicic acid concentrations likely limiting (1.7 µmol Si 

L-1; Paasche 1973a & b), whereas TOxN concentrations (17.5 µmol N L-1) and PO4 concentrations (1.22 µmol P L-1) can be 25 

considered replete. The low silicate concentrations could explain why Eucampia antarctica was not observed in this study, 

but has been observed north of South Georgia previously (Korb et al., 2010, 2012). This indicates that preceding diatom 

growth event had depleted silicic acid (and other nutrients such as dissolved iron), allowing E. huxleyi to become more 

dominant in the population with a similar residual nitrate environment as found on the Patagonian Shelf (this study, Balch et 

al., 2014; Balch et al., 2016).  30 
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4.2.3 Crozet Islands 

The E. huxleyi feature north of the Crozet Islands with an abundance of 472 cells mL−1 (highest in the South Indian Ocean) 

confirms the presence of coccolithophores this region. Coccolithophore abundances have not previously been reported in this 

region, although elevated PIC had been observed and attributed to E. huxleyi (Read et al., 2007; Salter et al., 2007). Chl a 

was lowest (0.47 mg m−3) at Crozet out of all three high PIC features, though E. huxleyi contributed ~20% of this signal 5 

(based on 0.2 pg Chl-a per cell), proportionally higher than on the Patagonian Shelf and near South Georgia. Previous 

studies around the Crozet Islands and plateau (2004-2005) have found indications of coccolithophores in sediment trap 

samples (Salter et al. 2007) and associated large (>30 mmol C m−2 d−1) calcite fluxes (Le Moigne et al., 2012), though 

surface cell counts were unavailable (Read et al., 2007). The satellite-derived calcite signal was observed to increase after the 

main Chl a event in this study (Fig. S1) and in previous years (Salter et al., 2007). An increase in coccolithophore abundance 10 

following a diatom bloom is also observed in other oceanic regions from satellite-derived products (Hopkins et al., 2015) and 

is associated with depletion of dissolved iron and/or silicic acid (Holligan et al., 2010) in addition to a stable water column 

and increased irradiance (Balch et al., 2014). 

4.2.4 Summary of biogeochemical characterization of coccolithophore occurrence and abundance 

The Southern Ocean was previously considered to have a mineralizing phytoplankton community dominated by diatoms. 15 

This study highlights that E. huxleyi can form distinct features within the GCB and contribute up to 20% towards total Chl a 

in these features compared to an average of less than 5% Chl a across the rest of the GCB. Hence, Emiliania huxleyi is likely 

to have a more important role in biogeochemical processes in the GCB than previously thought. This is particularly 

important to consider when assessing the impact on calcium carbonate associated export (e.g., Honjo et al., 2000; Balch et 

al., 2010; Balch et al., 2016) in the Southern Ocean. If E. huxleyi is migrating poleward with time (Winter et al., 2013) then 20 

the dynamics of the carbon system in the GCB may change, particularly south of the SAF, where silicic acid derived export 

has historically been dominant (Honjo et al., 2000; Pondaven et al., 2000). Thus it is essential to gain an understanding of the 

environmental factors driving the distribution of E. huxleyi (Winter et al., 2013, Charalampopoulou et al., 2016) amongst 

other phytoplankton in the GCB to better predict the future biogeochemistry of the Southern Ocean.  

4.3 Environmental controls on biogeography 25 

The environmental variables that best describe coccolithophore and diatom species distribution in this study were SST, 

macronutrients (TOxN, silicic acid, NH4) and pCO2 (Spearman’s rank correlation = 0.55, p < 0.001), with the second highest 

correlation (Spearman’s rank correlation = 0.54, p < 0.001) including calcite saturation state (Ωcalcite). The inclusion of pCO2 

and Ωcalcite as important factors indicates a potential influence of carbonate chemistry on coccolithophore and diatom 

distribution (and vice versa) in the GCB. However, Ωcalcite had a very strong positive correlation (r = 0.964, p < 0.0001) with 30 
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SST (Table S1) and therefore separating the influences of the two variables was impossible in this study due to the tight 

coupling between carbonate chemistry and temperature (as also observed by Charalampopoulou et al., 2016). 

4.3.1 Temperature 

Temperature is recognized as a strong driving factor behind plankton biogeography and community composition (Raven and 

Geider, 1988; Boyd et al., 2010). The abundance of two of the dominant species E. huxleyi and F. pseudonana did not 5 

significantly correlate (Pearson’s product moment correlation = 0.147, p = 0.493 and r = -0.247, p = 0.357 respectively) with 

SST, which does not agree with previous work (e.g., Mohan et al., 2008) and implies that E. huxleyi distribution is not solely 

determined by latitudinal variations in temperature. Nanoplankton are subject to high grazing pressure (Schmoker et al., 

2013) and the growth and mortality of a species both directly influence cell abundances (Poulton et al., 2010), which could 

result in patchiness and deviation away from the theoretical species abundances relative to temperature or other 10 

environmental factors. In contrast, the negative correlation of F. nana (Pearson’s product moment correlation = -0.976, p < 

0.05, n = 4) versus the positive correlation of Pseudonitzschia sp. (Pearson’s product moment correlation = 0.544, p < 0.05, n 

= 19) with SST indicates that these two species have distinctly different physiological tolerances. Southern Ocean diatoms 

are mostly observed to have negative relationship with temperature (e.g. Eynaud et al., 1999; Boyd, 2002). Pseudonitzschia 

sp. was predominantly found in waters north of the PF in this study, as seen by Kopczynska et al. (1986), and is likely to be 15 

out competed by other diatom species (e.g. Chaetoceros sp. and Dactyliosolen sp.) further south due to different nutrient 

affinities and requirements (Kopczynska et al., 1986), particularly for dissolved iron and silicic acid. 

4.3.2 Nutrients 

Macronutrient gradients, particularly silicic acid, are considered one of the key driving factors between the differences in 

community structure in the Southern Ocean (Nelson and Treguer, 1992). TOxN (and PO4 by association) was identified in 20 

the BEST test as an important factor in the variability of phytoplankton distribution, but did not significantly correlate with 

the four dominant phytoplankton species (Fig. 4) contributing over 50% to changes in species composition in the GCB. 

Nitrate drawdown by Southern Ocean diatoms is limited by dissolved iron (dFe) availability south of the STF (Sedwick et 

al., 2002), which may explain the dominance of the nanoplankton (with lower dFe and macronutrient requirements; Ho et al., 

2003) in this study as they are not affected by low dFe concentrations as severely as the microplankton. The low silicic acid 25 

concentrations in the region between the SAF and the PF indicate that there was sufficient dFe to allow silicification and 

diatom growth, but either one or both of the macronutrients were then depleted to limiting concentrations (Assmy et al., 

2013). As an essential nutrient for diatoms, silicic acid concentrations less than 2 µmol Si L-1 were most common in the 

GCB, a level which is considered limiting for most diatom species (Paasche, 1973a & b; Egge and Asknes, 1992). However, 

even at stations with greater than 5 µmol Si L−1, the small diatom species (<10 µm) were still dominant and represented over 30 

40% of the total coccolithophore and diatom assemblage (numerically). There was a significant positive correlation between 
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silicic acid and the small (<5 µm) diatom F. nana (Pearson’s product moment correlation = 0.986, p < 0.05, n = 4), although 

F. nana is likely to have a low cellular silicate requirement similar to F. pseudonana (Poulton et al., 2013) relative to larger 

diatom species, so the high abundance of F. nana in the high silicic acid waters could be indicative of a seasonal progression 

rather than silicic acid dependence. Fragilariopsis sp. have been observed at high abundances near the Ross Sea ice shelf 

(Grigorov and Rigual-Hernandez, 2014) and high abundances of large diatoms in the silicic acid- (and dFe-) replete waters 5 

may have been found further south than the sampling strategy of this study allowed. In the South Atlantic and the South 

Pacific Ocean silicic acid depletion moves southwards as spring to summer progresses, with a maximum diatom biomass 

observed in late January at 65oS (Sigmon et al., 2002; Le Moigne et al., 2013). 

A significant negative correlation between E. huxleyi and silicic acid (Pearson’s product moment correlation = -0.410, p < 

0.05, n = 24) was found in this study, as has also been identified in the Scotia Sea (Hinz et al., 2012) and Patagonian Shelf 10 

(Balch et al., 2014). Low silicic acid may be considered a positive selection pressure for coccolithophores (Holligan et al. 

2010), especially when other macronutrients (and dFe) are replete. However, non-blooming coccolithophore species are now 

recognized as having silicic acid requirements, though this requirement is conspicuously absent from E. huxleyi (Durak et 

al., 2016).  Therefore the positive selection pressure at low silicic acid concentrations in the GCB is likely to be E. huxleyi 

specific rather than a coccolithophore-wide phenomena. To the south of the PF silicic acid increased (from < 1 to > 3 µmol 15 

Si L−1) with five stations between the SAF and PF (and one south of the PF, station GCB1-59), all numerically dominated by 

E. huxleyi, while other stations to the south of the PF were dominated by diatoms (Fig. 2).  

These results from the GCB indicate a progression of mineralizing phytoplankton southwards during spring as irradiance 

conditions become optimal and macronutrients are depleted. Low silicic acid is often associated with a high residual nitrate 

concentrations (defined as [NO3
-] - [Si(OH)4]), as has been observed on the Patagonian Shelf (Balch et al., 2014). The 20 

highest coccolithophore abundances in this study (excluding the Patagonian Shelf) were indeed observed in regions with 

‘residual nitrate’ concentrations greater than 10 µmol NO3 L-1 (Balch et al., 2016).  As silicic acid is depleted in the more 

northerly surface waters in spring, diatoms progressively become more successful further south as irradiance conditions 

allow, thereby producing a large HNLSiLC area between the Sub-Antarctic Front and Polar Front; an ideal environment for 

late summer E. huxleyi dominated communities to develop (Figure 6). 25 

Dissolved iron is recognized as a strong control on phytoplankton growth, community composition and species 

biogeography (e.g., Boyd, 2002, Boyd et al., 2015). In this study, dFe measurements were only made at a small number of 

sampling stations (n = 6; Twining, unpublished data, Balch et al., 2016) limiting their use in the multivariate statistical 

analysis of community composition. For these stations dFe showed a statistically significant negative correlation (Pearson’s 

product moment = -0.957, p < 0.01) with PC2 from the environmental analysis (Fig. S2). PC2 described the environmental 30 

variables least related to latitude (pH, pCO2 and ĒMLD), indicating that dFe was also decoupled from the strong latitudinal 

gradient in the environmental parameters (i.e. SST, Ωcalcire, macronutrients) in the GCB in the austral spring/summer. 
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Interestingly, dFe concentrations did positively correlate with coccolithophore abundance (Pearson’s product moment 

correlation = 0.858, p <0.05) rather than diatom abundance (p = 0.132, ns) (Fig. S2). Overall, these data support the 

hypothesis that coccolithophores occupy a niche unoccupied by large diatoms when dFe is replete and silicic acid is depleted 

(Balch et al., 2014; Hopkins et al., 2015). The numerical dominance of small diatoms less than 20 µm in the GCB during 

austral spring and summer, alongside the coccolithophore E. huxleyi, is thus potentially due to the reduced impact of nutrient 5 

limitation (dFe, silicic acid) on small cells with high ratios of surface area to volume (e.g., Hinz et al., 2012; Balch et al., 

2014). 

4.4 Relating the Great Calcite Belt to carbonate chemistry 

Relating carbonate chemistry to phytoplankton distribution, growth and physiology is an important step when considering 

the potential effects of climate change and ocean acidification on marine biogeochemistry. In this study, no significant 10 

correlation (Spearman’s r = 0.259, p = 0.164, n = 27) occurred between pH and Chl a. The inclusion of pCO2 and Ωcalcite as 

influential factors in describing the GCB biogeography highlights the importance of understanding phytoplankton responses 

to carbonate chemistry as a whole rather than as individual carbonate chemistry parameters (Bach et al., 2015). Of the four 

major species driving the differences in mineralizing plankton community composition and biogeography across the GCB, 

only F. pseudonana abundance was positively correlated with pCO2 (Pearson’s product moment coefficient = 0.577, p < 15 

0.05, n = 16).  

The response of diatoms to increasing pCO2 is not straight forward (e.g., Boyd et al., 2015), with some studies implying that 

large diatoms may be more successful in future climate scenarios (e.g., Tortell et al., 2008; Flynn et al., 2012), although 

changes in nutrient and light availability (via stronger stratification) may prevent a permanent switch in phytoplankton 

community structure (Bopp, 2005). The carbonate chemistry system is complex as biological activity also impacts on the 20 

concentration of each of the components. Organic matter production reduces dissolved inorganic carbon (CT) and hence 

pCO2 via photosynthesis, as well as increasing alkalinity (AT) through nutrient uptake, while subsequent respiration and 

remineralisation of organic matter has the opposite impact. The simultaneous actions of biological and physical processes 

result in seasonal and localized changes in the carbonate system, which are often difficult to decouple. 

In our study, there was no significant correlation between E. huxleyi and Ωcalcite (Pearson’s product moment = 0.093), which 25 

may be viewed as somewhat surprising given the potential detrimental effects on calcifiers at low saturation states (e.g. 

Riebesell et al., 2000). However, the waters of the GCB remained oversaturated (Ωcalcite > 2) throughout, and furthermore the 

relationship between coccolithophores, calcification and carbonate chemistry is now recognized as being complex and non-

linear (e.g., Beaufort et al., 2011; Smith et al., 2012; Poulton et al., 2014; Rivero-Calle et al., 2015; Bach et al., 2015; 

Charalampopoulou et al., 2016; Marañón et al., 2016). Hence, significant gaps remain in our understanding of the in situ 30 

coccolithophore response to increasing pCO2, reduced pH or decreasing Ωcalcite. Notably, a significant positive correlation 
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between Pseudonitzschia sp. and Ωcalcite also existed (Pearson’s product moment correlation = 0.5924, p < 0.01, n = 19) 

across the GCB despite there being presently no known detrimental effect on diatoms of low saturation states. However, due 

to the tight coupling of temperature and Ωcalcite, the correlation is more likely to be temperature driven. 

5 Summary 

This study of the GCB further highlights the importance of understanding the environmental controls on the distribution of 5 

mineralizing nanoplankton in the Southern Ocean. The results of this study suggest that four nanoplankton (<20 µm) 

phytoplankton species (three diatoms and one coccolithophore; F. pseudonana, F. nana, Pseudonitzschia sp., and Emiliania 

huxleyi) numerically dominated the compositional variation in mineralizing phytoplankton biogeography across the GCB. 

The contribution of E. huxleyi to phytoplankton biomass (as measured by Chlorophyll a) was generally less than  5%, 

although it increased up to 20% in association with high reflectance PIC features found on the Patagonian Shelf, north of 10 

South Georgia in the South Atlantic Ocean, and north of the Crozet Islands in the South Indian Ocean. This indicates that in 

the non-bloom conditions of the GCB, E. huxleyi could be as important as diatoms for phytoplankton biomass and primary 

production at localized spatial scales. 

Latitudinal gradients in temperature, macronutrients and carbonate chemistry 'best' describe the variation of phytoplankton 

community composition in this study. However, not all species were directly sensitive to the same environmental gradients 15 

as determined to be influencing the overall biogeography. The negative correlation between E. huxleyi and silicic acid 

highlights the potential for a seasonal southward movement of E. huxleyi once diatom blooms have depleted silicic acid.   

These results highlight that the Southern Ocean is highly dynamic system and further studies examining environmental 

controls on community distribution earlier in the productive season would greatly enhance overall understanding of the 

progression of phytoplankton community biogeography. The phytoplankton dynamics of the GCB are also more complex 20 

than first considered, with the nanophytoplankton (e.g., F. pseudonana) numerically dominant in non-bloom conditions (as 

opposed to microphytoplankton), which has further implications for modelling carbon export and projecting phytoplankton 

changes in future oceanic scenarios.  
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Tables 

 

Table 1: Details of Great Calcite Belt sampling stations including station and cruise identifier; station position latitude (Lat) 

and Longitude (Long); sea surface temperature (SST); surface salinity (Sal); mixed layer average irradiance (ĒMLD); surface 

macronutrient concentrations (nitrate and nitrite, TOxN; phosphate, PO4; silicate; ammonia, NH4) surface carbonate 5 

chemistry parameters (normalized total alkalinity, AT; dissolved inorganic carbon, CT; pH; partial pressure of carbon dioxide 

(pCO2); calcite saturation state (Ωcalcite); and surface chlorophyll a (Chl a, mg m−3). Bold type indicates those used in the 

statistical analyses. 
 

Table 2: Whole cell abundances of coccolithophores and diatoms in surface samples of the Great Calcite Belt, number of 10 

species in each group (S), Pielou’s evenness (J’, **** denotes that J’ was not calculated because only one species was 

present), the dominant species and its percentage contribution to the total numerical abundance of coccolithophores (%Co) 

or diatoms (%D). Holococcolithophores are abbreviated as Holococco*. Position denotes the location relative to the 

Southern Ocean fronts and zones (Z; north of the defined front) as defined by Orsi et al. (1995), letters after the front 

abbreviation denote specific locations and proximity to landmasses: Patagonian Shelf (PS); north of South Georgia (n SG); 15 

South Sandwich Islands (SS); Crozet Island (Cr), Kerguelen Island (K); Heard Island (H). 

 

Table 3: Principal component (PC) scores, percentage variation described (%V) and the Pearson’s product moment 

correlation associated with each variable and its significance level:  p <0.0001***, p<0.001**, p<0.005*, p< 0.01, p<0.05. 

 20 

Table 4: Phytoplankton assemblage groups identified, using the SIMPROF routine at p < 0.05, in the GCB (see also Figure 

3), from the South Atlantic (GCB1) and the South Indian (GCB2) Oceans. Location is indicated as in Figure 2. Group 

Average Similarity (Group Av.Sim%) defines the percentage similarity of the community structure in all the stations within 

each group. The defining species contributing >50% to the species similarity for each group as identified through the 

SIMPER routine are presented alongside the average similarity for each species in each group (Average Similarity), where 25 

higher Similarity SD indicates more consistent contribution to similarity within the group. The percentage contribution per 

species to the group similarity (Contribution %) was also calculated. 
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Table 1  

Station Lat Long SST Sal ĒMLD TOxN PO4 Si(OH4) NH4 AT CT pH pCO2 Ωcalc Chl a 
 o S o E o C  mol PAR m-2 d-1 µmol L-1    µatm  mg m-3 
GCB1-6 51.79 -56.11 8.6 34.0 17.8 14.2 1.05 1.7 0.64 2336 2138 8.09 367 3.3 0.84 
GCB1-16 46.26 -59.83 11.8 33.8 39.8 6.5 0.54 0.0 0.15 2333 2100 8.12 407 3.8 2.78 
GCB1-25 45.67 -48.95 16.1 35.1 25.5 0.0 0.23 0.2 0.16 2320 2047 8.12 390 4.6 0.73 
GCB1-32 40.95 -45.83 20.0 35.6 36.7 0.1 0.11 1.1 0.05 2307 2029 8.07 444 4.8 0.05 
GCB1-46 42.21 -41.21 18.3 34.9 16.0 0.2 0.19 0.3 0.00 2328 2050 8.09 356 4.7 0.09 
GCB1-59 51.36 -37.84 5.9 33.8 7.9 17.5 1.22 1.7 0.67 2368 2184 8.10 325 3.1 0.71 
GCB1-70 59.25 -33.15 1.1 34.0 9.7 22.3 1.74 78.5 1.54 2388 2235 8.10 407 2.6 0.13 
GCB1-77 57.28 -25.98 1.4 33.9 11.9 20.7 1.55 68.8 1.00 2386 2225 8.12 405 2.7 0.90 
GCB1-85 53.65 -17.75 4.1 33.9 8.9 19.1 1.33 0.7 0.30 2369 2191 8.12 363 3.0 1.11 
GCB1-92 50.4 -10.8 5.9 33.8 9.5 17.5 1.27 1.4 0.37 2362 2182 8.10 351 3.0 0.57 
GCB1-101 46.31 -3.21 11.0 34.0 17.1 12.5 0.95 0.6 0.16 2345 2134 8.08 400 3.5 0.46 
GCB1-109 42.63 3.34 15.1 34.4 20.0 5.3 0.56 0.8 0.00 2332 2098 8.07 359 4.0 0.39 
GCB1-117 39.00 9.49 18.8 35.0 19.4 0.0 0.20 0.7 0.06 2321 2047 8.08 299 4.7 0.32 
GCB2-5 37.09 39.48 21.0 35.5 11.2 0.0 0.05 1.1 0.07 2310 2005 8.10 340 5.2 0.12 
GCB2-13 40.36 43.5 18.4 35.3 13.7 0.1 0.17 0.2 0.02 2307 2032 8.09 351 4.7 0.19 
GCB2-27 45.82 51.05 7.7 33.7 5.8 20.1 1.35 2.9 0.14 2344 2194 8.00 425 2.6 0.47 
GCB2-35 46.74 57.48 8.1 33.7 8.7 18.9 1.40 1.7 0.49 2363 2175 8.08 355 3.1 0.21 
GCB2-43 47.52 64.04 6.5 33.7 5.9 21.7 1.53 0.5 0.38 2358 2197 8.04 387 2.8 0.34 
GCB2-53 49.3 71.32 5.1 33.7 8.5 23.8 1.66 7.1 0.17 2359 2210 8.03 396 2.6 0.41 
GCB2-63 54.4 74.56 3.5 33.8 3.0 25.3 1.70 10.5 0.21 2363 2210 8.07 360 2.6 0.26 
GCB2-73 59.71 77.75 1.1 33.9 4.3 28.0 1.91 40.4 0.34 2372 2233 8.07 360 2.4 0.29 
GCB2-87 54.25 88.14 3.4 33.9 4.3 24.2 1.69 9.0 0.45 2367 2216 8.06 367 2.6 0.28 
GCB2-93 49.81 94.13 7.8 34.0 5.9 17.5 1.27 1.5 0.26 2345 2149 8.10 333 3.3 0.18 
GCB2-100 44.62 100.5 13.0 34.8 4.7 6.4 0.55 0.2 0.15 2328 2083 8.11 326 4.1 0.33 
GCB2-106 40.13 105.38 17.0 35.4 12.8 0.1 0.14 0.3 0.03 2318 2029 8.13 313 4.9 0.24 
GCB2-112 40.26 109.6 15.8 34.9 11.1 3.6 0.43 0.2 0.00 2323 2060 8.11 332 4.4 0.36 
GCB2-119 42.08 113.4 13.8 34.8 11.2 5.3 0.55 0.2 0.01 2320 2080 8.10 342 4.1 0.27 
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Table 2 

  Coccolithophores (Co) Diatoms (D) 
Station Position Cell mL-1 S J' Dominant species % of Co Cell mL-1 S J' Dominant species % of D 
GCB1-6 SAF, PS 242 1 **** E. huxleyi 100 125 10 0.89 C. deblis 26 
GCB1-16 SAF, PS 1636 1 **** E. huxleyi 100 4589 2 0.21 F. pseudonana 96 
GCB1-25 SAFZ 53 5 0.82 S. mollischi 38 25 7 0.87 Pseudonitzschia sp. 37 
GCB1-32 STF 22 6 0.89 U. tenuis 31 15 3 0.79 Nitzschia sp. 55 
GCB1-46 STF 3 1 **** Holococco* 100 2 1 **** Chaetoceros sp. 56 
GCB1-59 sPF, n SG 565 1 **** E. huxleyi 100 164 14 0.78 T. nitzschoides 29 
GCB1-70 sPF 103 1 **** E. huxleyi 100 700 8 0.36 F. nana 81 
GCB1-77 sPF, SS 2 1 **** E. huxleyi 100 6787 1 **** F. nana 98 
GCB1-85 sPF 28 1 **** E. huxleyi 100 139 15 0.86 C. aequatorialis sp. 22 
GCB1-92 PFZ 77 2 0.13 E. huxleyi 98 102 14 0.8 Pseudonitzschia sp. 32 
GCB1-101 SAFZ 91 5 0.64 E. huxleyi 68 50 6 0.66 F. pseudonana 59 
GCB1-109 SAFZ 38 8 0.93 E. huxleyi 25 125 12 0.57 Pseudonitzschia sp. 61 
GCB1-117 STF 13 4 0.95 U. tenuis 35 204 2 0.17 C. closterium 95 
GCB2-5 STFZ 34 8 0.75 E. huxleyi 46 3 1 **** Nanoneis hasleae 47 
GCB2-13 STFZ 46 8 0.65 E. huxleyi 57 25 3 0.7 Nitzschia sp.<20µm 67 
GCB2-27 SAF, Cr 472 1 **** E. huxleyi 100 350 7 0.27 F. pseudonana 82 
GCB2-36 SAF 164 4 0.43 E. huxleyi 83 146 15 0.79 F. pseudonana 33 
GCB2-43 PFZ 11 1 **** E. huxleyi 100 83 11 0.63 F. pseudonana 54 
GCB2-53 sPF, K 51 3 0.9 E. huxleyi 56 494 7 0.56 F. pseudonana 47 
GCB2-63 sPF, H 132 1 **** E. huxleyi 100 245 9 0.46 F. pseudonana 71 
GCB2-73 sPF 0 0 **** n/a n/a 514 11 0.64 F. pseudonana 56 
GCB2-87 sPF 106 1 **** E. huxleyi 100 172 8 0.73 F. pseudonana 42 
GCB2-93 PFZ 98 4 0.49 E. huxleyi 80 71 14 0.77 Pseudonitzschia sp. 37 
GCB2-100 SAFZ 121 6 0.31 E. huxleyi 87 155 8 0.55 Pseudonitzschia sp. 67 
GCB2-106 STF 88 13 0.84 E. huxleyi 29 76 10 0.66 Pseudonitzschia sp. 54 
GCB2-112 STF 120 6 0.41 E. huxleyi 80 242 9 0.43 Pseudonitzschia sp. 74 
GCB2-119 SAFZ 117 8 0.35 E. huxleyi 82 63 8 0.64 Pseudonitzschia sp. 47 
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Table 3 

Variable PC1 - EV 5 (58%) PC2 - EV 1.5 (17%) 
Temp 0.42 (0.97***) 0.08 (-0.10) 
Salinity 0.36 (0.90***) 0 - 
EML 0.24 (-0.55*) 0.5 (0.62**) 
TOXN -0.4 (-0.91***) -0.05 (-0.06) 
SIL -0.35 (-0.77***) 0.02 (-0.03) 
NH4 -0.35 (-0.81***) -0.07 (-0.09) 
pH 0.18 (-0.39) -0.42 (-0.50*) 
pCO2 -0.15 (-0.33) 0.75 (0.89***) 
Ωcalcite 0.43 (-0.99***) -0.02 (-0.02) 
 

Table 4 

  Group  Station Location Group 
Av.Sim% 

Defining  
Species 

Average 
Similarity 

Similarity SD Contribution % 

     A 
     B 

GCB1-46 
GCB1-117 

STF n/a Holococco* 
Cylindrotheca sp. 

n/a n/a n/a 

     C   GCB1-70 SBDY 54.5 F. nana 53.3 n/a 97.8 
 GCB1-77       
     D  GCB1-25 N of PF 47.6 E. huxleyi 13.9 2.68 29.3 
   GCB1-109   Pseudonitzschia sp. 12.7 3.6 26.7 
 GCB2-36 

GCB2-93 
GCB2-100 
GCB2-106 
GCB2-112 
GCB2-119 

      

     E  GCB1-32 N of SAF 42.3 E. huxleyi 18.9 3.8 44.8 
 GCB1-101   Holococco* 8.45 4.01 20 
 GCB2-5 

GCB2-13 
      

     F  GCB1-6 PS 40.6 E. huxleyi 15.1 1.51 37.3 
    GCB1-16 

GCB1-59 
GCB1-85 
GCB1-92 
GCB2-27 
GCB2-43 
GCB2-53 
GCB2-63 
GCB2-73 
GCB2-87 

 
S of SAF 

 F. pseudonana 14.2 1.25 35 
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Figures 

 
Figure 1 Rolling 32 day composite from MODIS-Aqua for both (a) Chlorophyll a (mg m-3) and (b) PIC (µmol L-1) for the South 
Atlantic sector (17th January to 17th February 2011) and the South Indian sector (18th February to 20th March 2012). Station 
number identifiers and averaged positions of fronts as defined by Orsi et al. (1995) are superimposed: Sub-tTropical front (STF), 5 
Sub Antarctic front (SAF), Polar Front (PF), Southern Antarctic Circumpolar Current Front (SACCF) and Southern Boundary 
(SBDY). 
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Figure 2 Coccolithophore and diatom abundance and dominance information. The area of the circles denotes abundance while 
shading denotes percentage contribution of each phytoplankton group, where red denotes coccolithophore dominance and blue 
denotes diatom dominance. Fronts are defined as in Figure 1 

 5 
Figure 3 Statistically significant groups of coccolithophore and diatom communities in the Great Calcite Belt as identified by the 
SIMPROF routine. The colors designate which statistical group defines the coccolithophore and diatom assemblage at each station 
as shown in the group key. Fronts are defined as in Figure 1.  See Table 4 for full group species descriptions.  
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Figure 4 SEM images of the four phytoplankton species identified by the SIMPER analysis as characterizing the significantly 
different community structures. (a) E. huxleyi; (b) F. pseudonana; (c) F. nana; and (d): Pseudonitzschia sp.. Scale bar 2 um for a-c 
and 5 um for d. 
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Figure 5 Two dimensional non-metric multidimensional scaling (nMDS) ordination of station groupings A) as defined by the 
SIMPROF routine, with group color identifiers as in Figure 3, where relative distances between samples represent the similarity of 
species composition between phytoplankton communities. Overlay of bubble plots of the defining species abundance (cells mL−1) 
characterizing the statistically significant groups in the GCB (see also Table 4; (B) E. huxleyi abundance; (C) F. pseudonana 5 
abundance; (D) F. nana abundance; (E) Pseudonitzschia sp. abundance; and (E) Holococcolithophore abundance. The two-
dimensional stress of 0.15 gives a 'reasonable' representation of the data in a 2-D space (Clarke and Warwick, 2001). 
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Figure 6 Schematic of the potential seasonal progression occurring in the Great Calcite Belt, allowing coccolithophores to develop 
after the main diatom bloom. Note phytoplankton example images are not to scale. 
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